

UNITAID + PSI HIV SELF-TESTING AFRICA

Estimating the Cost of Scaling up HIVST

"HIV Self Testing - Going to Scale" STAR Workshop March 2017 Nairobi

Fern Terris-Prestholt

Collin Mangenah, Lawrence Mwenge, Linda Sande, Nurilign Ahmed, Marc D'Elbee

World Health Organization

Tonee Mwangi, Karin Hatzold

Observed Intervention costs provide key inputs to:

- Estimate cost-effectiveness within evaluation
- For planning need to estimate scale up costs, but how best to do this?
 - 1. Unit costs
 - 2. Cost functions
 - 3. Accounting identity
 - 4. Incremental cost multiplier

1. Unit costs , Johns applied by Stover & many mathematical models

- Use Average costs (AC) per output quantity (Q): e.g. AC /HIVST distributed * projected scale up Q to estimate Total costs (TC) or national budget requirements
- Most common approach to modelling scale up costs

Quantity

Ignores:

- Fixed and Variable Costs,
- Economies and Diseconomies of scale
- Programme learning
- Changes in input prices
- Service delivery models (vertical versus integrated, task shifting)

Quantity

• Demand constraints (pent up demand versus harder to reach populations)

2. Cost functions approach Meyer-Rath& Over (2012)

Total Cost =
$$f(p_i, q_k, Z_j)$$

Where: p_i : input prices; q_k : facility level quantities Z_j : All other relevant factors, e.g. maturity, distribution model (service level), integration, etc.

Key challenge:

- Requires large number of variables across numerous facilities to estimate
- To be explored for Facility based HTS where n=all evaluation sites (73), but less possible for STAR HIVST where n=56.

3. Accounting identity approach, Meyer-Rath& Over (2012)

Where: A:average cost, Q_f: facility output

Captures

- - Fixed & Variable Costs
 - Economies of scale at facility level

But Still Ignores:

- Above service level costs (or implicitly scales up proportionately)
 - Diseconomies of scale
 - Changes in input prices
 - Demand (pent up demand \rightarrow harder to reach populations)
 - Programme learning
 - Service delivery models (vertical versus integrated, task shifting)

4. Incremental costs multiplier approach: Terris-Prestholt

Most costs are chunky (fixed) at different levels,

- up to a certain capacity/output level
 - thereafter requiring a full new increment
- Incremental Cost Multiplier extends Accounting Identity,
 - with above service level costs, and
 - allows for varying multipliers required to estimate scale up costs

4. Incremental costs multiplier approach: Terris-Prestholt

4 Incremental cost multiplier - 2: Terris-Prestholt

Total Cost = Fixed Cost_{Start-up} + FC_{Central} + FC_{District} *Q_{Districts} +FC_{facility} *Q_{facility} + FC_{distributor} + Q_{distributor} + FC costs_{HIVSTkit} *Q_{HIVSTkit} + etc

Captures

- Categorises all costs by level at which fixed
- Economies of scale
- Above service level costs

But may still ignore:

- Diseconomies of scale due to:
- Changes in input prices -> Can be modelled
- Demand: pent up demand \rightarrow harder to reach pops, etc.

4. Incremental Cost multiplier: Terris-Prestholt

- 1. Identify at which level costs are fixed (fixed increments):
- e.g.
 - National
 - Regional
 - District
 - Clinic
 - Site
 - Kit distributed
 - Person linked
- 2. Estimate average cost at each level from top down costing
- 3. Multiply up to desired scale

..... An example from Community based HIV Self Testing

A worked example: HIVST in Zimbabwe- sequential roll out model

Model: Door-to-Door distribution in sequential district outreach

Field office team sequentially visits sites (38 planned in Ph1), followed by mobile New Start Clinics offering confirmatory testing

Progress (as of DEC 2016)Start up: achievedDistribution sites: 3 costedDistributors employed: 382

Kits Distributed: 40,961 (73,000 now)

Intermediate outcomes

Average kits per site:14,600 5-site Ave Average kits per distributor: 107 3-site Ave

Scale up Target (Ph2-y1): 320,000 kits Needed to achieve target: 21.3 Sites,

2,984 Distributors

But efficiency likely increases initially

Simplified overview of Top Down Costing approach

Project Accounts	\$	Input type	Model % Overh.	CBDA	H Fac.	Model \$ Overh.	CBDA	HF	Level
Printer	\$8	Equipm	100%			\$8*100%			National
Fringe Coordinator	\$5	Salary	10%	80%	10%	\$=.50	=.8*\$5=\$ 4	\$0.5	Field Team
Kits	\$18	supplies		100%			\$18		Kit Distribut.
:: all expenditure line items									
Total Financ. Cost	Tot Acct	\$ by input				\$ by activity			\$ by level
Economic Cost									
TOTAL Economic programme costs by Model, Ingredient, and Level									

Adding user costs generates total **SOCIETAL** costs per model, input and level (show transfer of cost from users to providers inHIVST

1b.Costing HIV ST: Level at which costs are Fixed

Start up costs

- All costs prior to 1st training
- Includes programme development, development of materials

Central direct & indirect costs

- Management procurement
- Central operations
- * Warehouse
- * Field Officer Team

FO Team Equipment Site level costs

- Training
- Waste Management
- Transport

Distributor level costs

- Staff
- Promotional materials

Kit level costs

• Supplies

Zimbabwe STAR HIV Self Test costs by level – Phase 2 scale up

Start with available observed data, and update as more becomes available,

• identify: capacity limits, changes to efficiency, prices, demand, etc.

<u>As of DEC 2016</u>	Total cost	Quantity	Ave Cost	Quantity	Total Cost	
Fixed cost per	Observed	Observed	Observed	Scale Up Ph2-y1	Scale up Ph2-y1	%
Prog. start up	\$397,000	1	\$ 397,000	0.1	\$ 39,700	1%
Central	\$517,000	5/12 months	\$ 1,240,800	1	\$ 1,240,800	32%
Field Team Eq.	\$60,000	1	\$ 60,000	1	\$ 60,000	2%
District	\$141,000	3	\$ 47,000	21	\$ 1,002,667	26%
Distributor	\$53,000	382	\$ 139	2,984	\$ 414,052	11%
Kit distributed	\$152,000	40,961	1 st price: \$3.70 Recent: \$3.53	320,000	\$ 1,129,600	29%
TOTAL COST	\$ 1,320,000				\$ 3,886,819	
\$/ kit distrib.	\$ 32.23*				\$ 12.15	

Notes: Currently Zim HIVST programme has currently completed <u>5</u> district and 73,000, costing complete in 3, * \$23.3 if start up shared across 38 sites rather than 3

Zimbabwe STAR HIV Self Test costs by level – National Scale up

DEC 2016 Fixed cost per	Total cost Observed	Quantity Observed	Ave Cost Observed	Quantity Scale Up National	Total Cost Scale up National	%
Progr. start up	\$397,000	1	\$ 397,000	10%	\$39,700	0%
Central	\$517,000	5/12 months	\$ 1,240,800	1.15	\$1,426,920	16%
Field Team Eq.	\$60,000	1	\$ 60,000	2	\$120,000	1%
District	\$141,000	3	\$ 47,000	64	\$3,008,000	34%
Distributor	\$53,000	382	\$ 139	8,972	\$1,244,801	14%
Kit distributed	\$152,000	40,961	P2018: \$3.15	960,000	\$3,024,000	34%
TOTAL COST	\$ 1,320,000				\$8,863,421	
Unit cost per	\$ 32 23*	/				
kit distributed	Υ Υ Ε.Ε.Ο	Importar	nt to		\$ 9.23	
		update!				

Remaining Challenges, for more detailed cost modelling

- Challenges to be modelled more specifically, use *observed* costs:
 - Demand:
 - Pent up demand -> high early demand -> lower unit costs
 - Testing fatigue & resistant testers -> increased costs to reach
 - Changes to input prices, e.g.
 - Test kit prices: Unit costs $\sqrt{4}$ due to bulk procurement (e.g. \$3.70 -> \$3.53->3.15 ->\$2.50??)
 - Promotional materials, etc. \checkmark with bulk procurement
 - Staffing shortages: \uparrow unit costs, though integration can lead to \downarrow salary costs
 - Transport: \checkmark UC, integrated logistics
 - Programme learning
 - Higher unit costs in early interventions while programmes learn and improve efficiency
 - \rightarrow Zimbabwe sequential costing will estimate, for incorporation into models
 - Service delivery models (vertical versus integrated, task shifting)

 \rightarrow learn from cross country/ cross model evaluations

Don't forget to update costs estimates periodically

As input into CEA Modelling

\$/ person tested\$/ person tested\$/ HIV+ identified

\$/ person linked to confirmatory testing\$/ person initiated

\$/ person retained in care
\$/ person circumcised

Conclusions: How to model scale up costs

- Average costs from pilots: simple but likely too high
- Cost functions: precise but need many variables & observations
- Facility Accounting identity: Useful, but insufficient for large scale projects with costs at many levels
- Incremental Cost Multiplier: Suitable when observed costs available
- But Scale up modelling must still ensure consideration of:
 - Above service level costs and constraints
 - Changes in input prices
 - Changes in demand over time

Contact

FERN TERRIS-PRESTHOLT,

Associate Professor in the Economics of HIV Lead Economist (STAR) Project Fern.Terris-Prestholt@lshtm.ac.uk

